
MPI is too High-Level
MPI is too Low-Level
Marc Snir

“High-Level” MPI

MPI is an Application
Programming
Interface
• from MPI-1.0:``Design

an application
programming interface
(not necessarily for
compilers or a system
implementation
library).''

• Claim: MPI is too low-
level for this role

Vendor	
Firmware

Vendor	
Firmware…

MPI

Application Application…

MPI is too Low Level

• Critique is (almost) as old as MPI: MPI is bad for
programmer productivity

• Recent example (2015):
– HPC is dying and MPI is killing it (Jonathan Dursi)

• “MPI is the assembly language of parallel
programming”
– Not used as a compliment…

• Largely irrelevant: Most “use” of MPI is indirect

3

Application Application

Vendor	
Firmware

Vendor	
Firmware…

MPI

…
Library,	

framework,	
DSL,	Language

Library,	
framework,	

DSL,	Language

…

“Low-Level” MPI

MPI is a communication
run-time that is not
exposed to applications
• In the back of our mind

during MPI design
– But this view did not

influence MPI design

• MPI is too high-level for
this role

MPI is too High Level
• An assembly is a low-level programming language … in

which there is a very strong correspondence between the
language and the architecture's machine
code instructions. (Wikipedia)

• MPI is not “the assembly language of parallel programming”
• There is a large semantic gap between the functionality of a

modern NIC and MPI
– MPI has significant added functionality that necessitates a

thick software stack
– MPI misses functionality that is provided by modern NICs

5

Trivial Example: Datatypes (1)

• Many frameworks/DSL’s have their own
serialization/deserialization capabilities
– These will be optimized for the specific data structures

used by the framework (trapezoidal submatrices,
compressed sparse matrices, graphs, etc.)

• For static types, the serialization code can be compiled –
this is much more efficient than MPI interpretation of a
datatype

• Some early concerns about heterogeneity (big/small endian,
32/64 bits) are now moot

6

Trivial Example: Datatype (2)

• High-level MPI needs datatypes (or templated
functions?)

• Low level MPI needs transfer of contiguous bytes

• Why care, you have both in MPI?
1. Each extra argument and extra opaque object is

extra overhead
2. Large, unoptimized subsets of MPI are deadweight

that slow development

7

(1) Simple most communication call

• int MPI_Irecv(void *buf, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm,
MPI_Request *request);

• Three opaque objects (indirection)
• Two arguments have “special values” (branches)
• Communication can use different protocols, according to

source (shared memory or NIC)
• An API should have reasonable error checking

• None of that is needed in a low-level runtime

8

(2) MPI Evolution

• MPI 1.1 (June 1995)
– 128 functions, 231

pages
• MPI 2.1 (June 2008)
– 330 functions, 586

pages
• MPI 3.1 (June 2015)
– 451 functions, 836

pages

9

Continued growth at current rate is not tenable!

0

200

400

600

800

1000

1200

1400

1990 1995 2000 2005 2010 2015 2020 2025 2030

MPI	Evolution

Problems of Large MPI

• Hard to get a consistent standard
– E.g., fault tolerance

• Hard to evolve ~ 1 MLOC code
• Most features are not used, hence not optimized,

hence not used – vicious circle

10

Simple Example: Don’t Cares & Order
• Don’t cares and ordering

constraints prevent efficient
implementation of
MPI_THREAD_MULTIPLE
– Problem is inherent to MPI’s

semantics
– Getting worse with

increased concurrency
– Good support for

MPI_THREAD_MULTIPLE is
possible with no dontcares
and is essential to future
performance

11H	V	Dang,	M	Snir,	B	Gropp

MPI Solutions
High-Level MPI

• Provide mechanism to
indicate no order or no don’t-
care on communicator
– Yet another expansion of

standard
– Slowdown because of an extra

branch
– Difficulty of using two

fundamentally different matching
mechanisms

Low-Level MPI
• Get rid of message ordering
– Usually not needed; if needed,

can be imposed at higher-level
with sequence numbers

• Use a “send don’t care” to be
matched by a ”receive don’t
care”
– Assume sender “knows” the

receiver uses dontcare.

12

Complex Example: Synchronization

• Point-to-point communication:
– Transfers data from one address space to another
– Signals the transfer is complete (at source and at

destination)
• MPI signal = set request opaque object
• Problems:
– Forces application to poll
– Provides inefficient support to many important

signaling mechanisms

13

Signaling Mechanisms

1. Set flag
2. Decrement counter
3. Enqueue data + metadata in completion queue
4. Enqueue metadata + ptr to data in completion

queue
5. Wake up (light-weight) thread
6. Execute (simple) task – active message
7. fence/barrier

14

Signaling Mechanisms

• Each of these mechanisms is used by some framework
• All are currently implemented (inefficiently) atop MPI by

adding a polling communication server
• 1-4 & 7 can be easily implemented by NIC (many are

already implemented)
• 5 could be implemented by NIC if comm. library and thread

scheduler agree on simple signaling mechanism (e.g., set
flag)

• 6 can be implemented in comm. library (callback) with
suitable restrictions on active message task (OK at low level
interface)

15

Application Application

Vendor	
Firmware

Vendor	
Firmware…

MPI--

…
Library,	

framework,	
DSL,	Language

Library,	
framework,	

DSL,	Language

…

Should we Bifurcate MPI?

MPI++

Application Application

Vendor	
Firmware

Vendor	
Firmware…

OFI	(or	UCX,	or…)

…
Library,	

framework,	
DSL,	Language

Library,	
framework,	

DSL,	Language

…

Do we Need to Invent Something New?

MPI++

Not sure

• Will industry converge to one standard without
community push?
– Standards are good, so we need many…

• Need richer set of “completion services” than currently
available in OFI (queues and counters)
– Need more help from NIC and library in

demultiplexing communications
• Need (weak) QoS & isolation provisions in support of

multiple clients

18

19

